

DATA SCIENCE

with DATA ANALYTICS, MACHINE LEARNING, NLP, DL & Al using PYTHON & R INTRODUCTION TO DATA SCIENCE

- What is a Data Science?
- Who is a Data Scientist?
- Who can become a Data Scientist?
- What is an Artificial Intelligence?
- What is a Machine Learning?
- What is a Deep Learning?
- > Artificial Intelligence Vs Machine Learning Vs Deep Learning
- > Real Time Process of Data Science
- Data Science Real Time Applications
- Technologies used in Data Science
- Prerequisites Knowledge to Learn Data Science

INTRODUCTION TO MACHINE LEARINING

- What is a Machine Learning?
- Machine Learning Vs Statistics
- Traditional Programming Vs Machine Learning
- How Machine Will Learn like Human Learning
- Machine Learning Engineer Responsibilities
- Types of Machine Learning
 - Supervised learning
 - Un-Supervised learning
 - · Reinforcement Learning

CORE PYTHON PROGRAMMING

- > PYTHON Programming Introduction
- History of Python
- Python is Derived from?

- Python Features
- > Python Applications
- Why Python is Becoming Popular Now a Day?
- Existing Programming Vs Python Programming
- Writing Programs in Python
- Top Companies Using Python
- Python Programming Modes
 - Interactive Mode Programming
 - Scripting Mode Programming
- Flavors in Python, Python Versions
- Download & Install the Python in Windows & Linux
- ➤ How to set Python Environment in the System?
- > Anaconda Data Science Distributor
- Downloading and Installing Anaconda, Jupyter Notebook & Spyder
- Python IDE Jupyter Notebook Environment
- Python IDE Spyder Environment
- Python Identifiers(Literals), Reserved Keywords
- Variables, Comments
- Lines and Indentations, Quotations
- Assigning Values to Variables
- > Data Types in Python
- > Mutable Vs Immutable
- > Fundamental Data Types: int, float, complex, bool, str
- Number Data Types: Decimal, Binary, Octal, Hexa Decimal & Number Conversions
- Inbuilt Functions in Python
- Data Type Conversions
- Priorities of Data Types in Python
- Python Operators
 - Arithmetic Operators
 - Comparison (Relational) Operators
 - Assignment Operators
 - Logical Operators
 - Bitwise Operators
 - Membership Operators
 - Identity Operators
- Slicing & Indexing
 - Forward Direction Slicing with +ve Step
 - o Backward Direction Slicing with -ve Step
- Decision Making Statements

- if Statement
- if-else Statement
- elif Statement
- Looping Statements
 - o Why we use Loops in python?
 - Advantages of Loops
 - for Loop
 - Nested for Loop
 - Using else Statement with for Loop
 - while Loop
 - Infinite while Loop
 - Using else with Python while Loop
- Conditional Statements
 - o break Statement
 - o continue Statement
 - Pass Statement

ADVANCED PYTHON PROGRAMMING

- Advanced Data Types: List, Tuple, Set, Frozenset, Dictionary, Range, Bytes & Bytearray, None
- > List Data Structure
 - List indexing and splitting
 - Updating List values
 - List Operations
 - Iterating a List
 - o Adding Elements to the List
 - o Removing Elements from the List
 - List Built-in Functions
 - List Built-in Methods
- > Tuple Data Structure
 - Tuple Indexing and Splitting
 - Tuple Operations
 - Tuple Inbuilt Functions
 - Where use Tuple
 - List Vs Tuple
 - Nesting List and Tuple
- > Set Data Structure
 - Creating a Set
 - Set Operations
 - Adding Items to the Set

- Removing Items from the Set
- Difference Between discard() and remove()
- Union of Two Sets
- Intersection of Two Sets
- Difference of Two Sets
- Set Comparisons
- Frozenset Data Structure
- Dictionary Data Structure
 - Creating the Dictionary
 - Accessing the Dictionary Values
 - Updating Dictionary Values
 - Deleting Elements Using del Keyword
 - Iterating Dictionary
 - Properties of Dictionary Keys
 - Built-in Dictionary Functions
 - Built-in Dictionary Methods
- List Vs Tuple Vs Set Vs Frozenset Vs Dict
- Range, Bytes, Bytearray & None
- > Python Functions
 - Advantage of Functions in Python
 - Creating a Function
 - Function Calling
 - o Parameters in Function
 - Call by Reference in Python
 - Types of Arguments
 - Required Arguments
 - Keyword Arguments
 - Default Arguments
 - Variable-Length Arguments
- Scope of Variables
- > Python Built-in Functions
- > Python Lambda Functions
- > String with Functions
 - Strings Indexing and Splitting
 - String Operators
 - Python Formatting Operator
 - o Built-in String Functions
- Python File Handling
 - Opening a File
 - Reading the File
 - Read Lines of the File

- Looping through the File
- Writing the File
- Creating a New File
- Using with Statement with Files
- File Pointer Positions
- Modifying File Pointer Position
- Renaming the File & Removing the File
- o Writing Python Output to the Files
- File Related Methods
- Python Exceptions
 - Common Exceptions
 - Problem without Handling Exceptions
 - o except Statement with no Exception
 - Declaring Multiple Exceptions
 - Finally Block
 - Raising Exceptions
 - Custom Exception
- > Python Packages
 - Python Libraries
 - Python Modules
 - Collection Module
 - Math Module
 - OS Module
 - Random Module
 - Statistics Module
 - Sys Module
 - Date & Time Module
 - Loading the Module in our Python Code
 - import Statement
 - from-import Statement
 - Renaming a Module
- > Regular Expressions
- Command Line Arguments
- Object Oriented Programming (OOPs)
 - Object-oriented vs Procedure-oriented Programming languages
 - Object
 - Class
 - Method
 - Inheritance
 - Polymorphism

- Data Abstraction
- Encapsulation
- Python Class and Objects
 - Creating Classes in Python
 - Creating an Instance of the Class
- > Python Constructor
 - Creating the Constructor in Python
 - Parameterized Constructor
 - Non-Parameterized Constructor
 - In-built Class Functions
 - In-built Class Attributes
- > Python Inheritance
 - o Python Multi-Level Inheritance
 - o Python Multiple Inheritance
 - Method Overriding
 - Data Abstraction in Python
- > Graphical User Interface (GUI) Programming
- Python TKinter
 - Tkinter Geometry
 - pack() Method
 - grid() Method
 - place() Method
 - Tkinter Widgets

DATA ANALYSIS WITH PYTHON NUMPY

- NumPy Introduction
 - What is NumPy
 - The Need of NumPy
- NumPy Environment Setup
- N-Dimensional Array (Ndarray)
 - Creating a Ndarray Object
 - Finding the Dimensions of the Array
 - Finding the Size of Each Array Element
 - Finding the Data Type of Each Array Item
 - Finding the Shape and Size of the Array
 - Reshaping the Array Objects
 - Slicing in the Array
 - Finding the Maximum, Minimum, and Sum of the Array Elements
 - NumPy Array Axis

- Finding Square Root and Standard Deviation
- Arithmetic Operations on the Array
- Array Concatenation
- NumPy Datatypes
 - NumPy dtype
 - Creating a Structured Data Type
- Numpy Array Creation
 - Numpy.empty
 - Numpy.Zeros
 - NumPy.ones
- Numpy Array from Existing Data
 - Numpy.asarray
- Numpy Arrays within the Numerical Range
 - Numpy.arrange
 - NumPy.linspace
 - Numpy.logspace
- NumPy Broadcasting
 - Broadcasting Rules
- NumPy Array Iteration
 - Order of Iteration
 - F-Style Order
 - C-Style Order
 - Array Values Modification
- NumPy String Functions
- NumPy Mathematical Functions
 - Trigonometric Functions
 - Rounding Functions
- NumPy Statistical functions
 - o Finding the Min and Max Elements from the Array
 - o Calculating Median, Mean, and Average of Array Items
- NumPy Sorting and Searching
- NumPy Copies and Views
- NumPy Matrix Library
- NumPy Linear Algebra
- NumPy Matrix Multiplication in Python

DATA ANALYSIS WITH PYTHON PANDAS

- > Pandas Introduction & Pandas Environment Setup
 - Key Features of Pandas
 - Benefits of Pandas

- Python Pandas Data Structure
 - Series
 - DataFrame
 - Panel
- Pandas Series
 - Creating a Series
 - Create an Empty Series
 - Create a Series using Inputs
 - Accessing Data from Series with Position
 - Series Object Attributes
 - Retrieving Index Array and Data Array of a Series Object
 - Retrieving Types (dtype) and Size of Type (itemsize)
 - Retrieving Shape
 - Retrieving Dimension, Size and Number of Bytes
 - Checking Emptiness and Presence of NaNs
 - Series Functions
- Pandas DataFrame
 - Create a DataFrame
 - Create an Empty DataFrame
 - Create a DataFrame using Inputs
- Column Selection, Addition & Deletion
- > Row Selection, Addition & Deletion
- DataFrame Functions
- Merging, Joining & Combining DataFrames
- Pandas Concatenation
- Pandas Time Series
 - Datetime
 - Time Offset
 - Time Periods
 - Convert String to Date
- Viewing/Inspecting Data (loc & iloc)
- Data Cleaning
- Filter, Sort, and Groupby
- > Statistics on DataFrame
- Pandas Vs NumPy
- DataFrame Plotting
 - Line: Line Plot (Default)
 - Bar: Vertical Bar Plot
 - Barh: Horizontal Bar Plot
 - Hist: Histogram Plot
 - Box: Box Plot

Pie: Pie Chart

Scatter: Scatter Plot

DBMS - Structured Query Language

- > Introduction & Models of DBMS
- SQL & Sub Language of SQL
- Data Definition Language (DDL)
- Data Manipulation Language (DML)
- Data Query/Retrieval Language (DQL/DRL)
- Transaction Control Language (TCL)
- Data Control Language (DCL)
- Installation of MySQL & Database Normalization
- Sub Queries & Key Constraints
- > Aggregative Functions, Clauses & Views

Importing & Exporting Data

- Data Extraction from CSV (pd.read_csv)
- Data Extraction from TEXT File (pd.read_table)
- Data Extraction from CLIPBOARD (pd.read_clipboard)
- Data Extraction from EXCEL (pd.read_excel)
- Data Extraction from URL (pd.read_html)
- Writing into CSV (df.to_csv)
- Writing into EXCEL (df.to_excel)
- > Data Extraction from DATABASES
 - Python MySQL Database Connection
 - Import mysql.connector Module
 - Create the Connection Object
 - Create the Cursor Object
 - Execute the Query

DATA VISUALIZATION WITH PYTHON MATPLOTLIB

- Data Visualization Introduction
- > Tasks of Data Visualization
- > Benefit of Data Visualization
- > Plots for Data Visualization
- Matplotlib Architecture
- General Concept of Matplotlib
- MatPlotLib Environment Setup
- Verify the MatPlotLib Installation
- Working with PyPlot

- > Formatting the Style of the Plot
- Plotting with Categorical Variables
- Multi-Plots with Subplot Function
- ➤ Line Graph
- Bar Graph
- > Histogram
- Scatter Plot
- > Pie Plot
- > 3Dimensional 3D Graph Plot
- mpl_toolkits
- > Functions of MatPlotLib
- > Contour Plot, Quiver Plot, Violin Plot
- > 3D Contour Plot
- > 3D Wireframe Plot
- > 3D Surface Plot
- ➤ Box Plot
 - o What is a Boxplot?
 - o Mean, Median, Quartiles, Outliers
 - o Inter Quartile Range (IQR), Whiskers
 - Data Distribution Analysis
 - Boxplot on a Normal Distribution
 - o Probability Density Function
 - o 68-95-99.7 Rule (Empirical rule)

Data Analysis Project using Python Programming MACHINE LEARNING

- What is Machine Learning
- Importance of Machine Learning
- Need for Machine Learning
- > Statistics Vs Machine Learning
- > Traditional Programming Vs Machine Learning
- > How Machine Learning like Human Learning
- How does Machine Learning Work?
- Machine Learning Engineer Responsibilities
- Life Cycle of Machine Learning
 - Gathering Data
 - Data preparation
 - Data Wrangling
 - Analyze Data
 - Train the model

- Test the model
- Deployment
- Features of Machine Learning
- History of Machine Learning
- Applications of Machine Learning
- > Types of Machine Learning
 - Supervised Machine Learning
 - Unsupervised Machine Learning
 - Reinforcement Learning

Supervised Machine Learning

- How Supervised Learning Works?
- > Steps Involved in Supervised Learning
- > Types of supervised Machine Learning Algorithms
 - Classification
 - o Regression
- Advantages of Supervised Learning
- Disadvantages of Supervised Learning

Unsupervised Machine Learning

- How Unsupervised Learning Works?
- Why use Unsupervised Learning?
- > Types of Unsupervised Learning Algorithm
 - Clustering
 - Association
- Advantages of Unsupervised Learning
- Disadvantages of Unsupervised Learning
- Supervised Vs Unsupervised Learning
- Reinforcement Machine Learning
- How to get Datasets for Machine Learning?
 - o What is a Dataset?
 - Types of Data in Datasets
 - Popular Sources for Machine Learning Datasets

Data Preprocessing in Machine Learning

- Why do we need Data Preprocessing?
 - Getting the Dataset
 - Importing Libraries
 - Importing Datasets
 - Finding Missing Data

- By Deleting the Particular Row
- By Calculating the Mean
- Encoding Categorical Data
 - LableEncoder
 - OneHotEncoder
- Splitting Dataset into Training and Test Set
- Feature Scaling
 - Standardization
 - Normalization

Classification Algorithms in Machine Learning

- What is the Classification Algorithm?
- > Types of Classifications
 - Binary Classifier
 - Multi-class Classifier
- > Learners in Classification Problems
 - Lazy Learners
 - Eager Learners
- > Types of ML Classification Algorithms
 - Linear Models
 - Logistic Regression
 - Support Vector Machines
 - Non-linear Models
 - K-Nearest Neighbors
 - Naïve Bayes
 - Decision Tree Classification
 - Random Forest Classification
 - Kernel SVM
- > Evaluating a Classification Model
 - Confusion Matrix
 - What is a Confusion Matrix?
 - True Positive
 - True Negative
 - False Positive Type 1 Error
 - False Negative Type 2 Error
 - Why need a Confusion matrix?
 - Precision
 - Recall
 - Precision vs Recall
 - F1-score

- Confusion Matrix in Scikit-Learn
- Confusion Matrix for Multi-Class Classification
- Log Loss or Cross-Entropy Loss
- AUC-ROC curve
- Use cases of Classification Algorithms

K-Nearest Neighbor(KNN) Algorithm in Machine Learning

- Why do we Need a K-NN Algorithm?
- How does K-NN work?
 - What is Euclidean Distance
 - How it Calculates the Distance
- How to Select the Value of K in the K-NN Algorithm?
- Advantages of KNN Algorithm
- Disadvantages of KNN Algorithm
- Python Implementation of the KNN Algorithm
- Analysis on Social Network Ads Dataset
- Steps to Implement the K-NN Algorithm
 - Data Pre-processing Step
 - Fitting the K-NN algorithm to the Training Set
 - Predicting the Test Result
 - Test Accuracy of the Result (Creation of Confusion Matrix)
 - Visualizing the Test Set Result.
 - Improve the Performance of the K-NN Model

Naïve Bayes Classifier Algorithm in Machine Learning

- Why is it Called Naïve Bayes?
 - o Naïve Means?
 - o Bayes Means?
- Bayes' Theorem
 - Posterior Probability
 - Likelihood Probability
 - Prior Probability
 - Marginal Probability
- > Working of Naïve Bayes' Classifier
- > Advantages of Naïve Bayes Classifier
- Disadvantages of Naïve Bayes Classifier
- > Applications of Naïve Bayes Classifier
- Types of Naïve Bayes Model
 - o Gaussian Naïve Bayes Classifier
 - o Multinomial Naïve Bayes Classifier

- o Bernoulli Naïve Bayes Classifier
- Python Implementation of the Naïve Bayes Algorithm
- Steps to Implement the Naïve Bayes Algorithm
 - Data Pre-processing Step
 - Fitting Naive Bayes to the Training set
 - Predicting the Test Result
 - Test Accuracy of the Result (Creation of Confusion matrix)
 - Visualizing the Test Set Result
 - o Improve the Performance of the Naïve Bayes Model

Decision Tree Classification Algorithm in Machine Learning

- Why use Decision Trees?
- > Types of Decision Trees
 - Categorical Variable Decision Tree
 - Continuous Variable Decision Tree
- Decision Tree Terminologies
- ➤ How does the Decision Tree Algorithm Work?
- > Attribute Selection Measures
 - Entropy
 - Information Gain
 - Gini index
 - Gain Ratio
- Algorithms used in Decision Trees
 - \circ ID3 Algorithm \rightarrow (Extension of D3)
 - C4.5 Algorithm→ (Successor of ID3)
 - CART Algorithm → (Classification & Regression Tree)
- ➤ How to Avoid/Counter Overfitting in Decision Trees?
 - o Pruning Decision Trees
 - o Random Forest
- Pruning: Getting an Optimal Decision tree
- > Advantages of the Decision Tree
- Disadvantages of the Decision Tree
- Python Implementation of Decision Tree
- Steps to Implement the Decision Tree Algorithm
 - o Data Pre-processing Step
 - o Fitting a Decision-Tree Algorithm to the Training Set
 - Predicting the Test Result
 - Test Accuracy of the Result (Creation of Confusion matrix)
 - Visualizing the Test Set Result
 - Improve the Performance of the Decision Tree Model

Random Forest Classifier Algorithm in Machine Learning

- Working of the Random Forest Algorithm
- Assumptions for Random Forest
- Why use Random Forest?
- How does Random Forest Algorithm Work?
 - Ensemble Techniques
 - Bagging (Bootstrap Aggregation)
- Applications of Random Forest
- > Disadvantages of Random Forest
- Python Implementation of Random Forest Algorithm
- > Steps to Implement the Random Forest Algorithm:
 - Data Pre-processing Step
 - o Fitting the Random Forest Algorithm to the Training Set
 - Predicting the Test Result
 - Test Accuracy of the Result (Creation of Confusion Matrix)
 - Visualizing the Test Set Result
 - Improving the Performance of the Random Forest Model

Logistic Regression Algorithm in Machine Learning

- Logistic Function (Sigmoid Function)
- Assumptions for Logistic Regression
- Logistic Regression Equation
- > Type of Logistic Regression
 - o Binomial Logistic Regression
 - Multinomial Logistic Regression
 - Ordinal Logistic Regression
- Python Implementation of Logistic Regression (Binomial)
- Steps to Implement the Logistic Regression:
 - o Data Pre-processing Step
 - o Fitting Logistic Regression to the Training Set
 - Predicting the Test Result
 - Test Accuracy of the Result (Creation of Confusion Matrix)
 - Visualizing the Test Set Result
 - $_{\circ}$ Improve the Performance of the Logistic Regression Model

Support Vector Machine Algorithm

- > Types of Support Vector Machines
 - Linear Support Vector Machine
 - o Non-Linear Support Vector Machine

- Hyperplane in the SVM Algorithm
- Support Vectors in the SVM Algorithm
- How does SVM Works?
 - o How does Linear SVM Works?
 - o How does Non-Linear SVM Works?
- Python Implementation of Support Vector Machine
- Steps to Implement the Support Vector Machine:
 - Data Pre-processing Step
 - o Fitting Support Vector Machine to the Training Set
 - Predicting the Test Result
 - Test Accuracy of the Result (Creation of Confusion Matrix)
 - Visualizing the Test Set Result
 - Improve the Performance of the Support Vector Machine Model

Regression Algorithms in Machine Learning

- > Terminologies Related to the Regression Analysis
 - Dependent Variable
 - Independent Variable
 - Outliers
 - Multi-collinearity
 - o Under fitting and Overfitting
- Why do we use Regression Analysis?
- > Types of Regression
 - o Linear Regression
 - o Logistic Regression
 - o Polynomial Regression
 - Support Vector Regression
 - Decision Tree Regression
 - o Random Forest Regression
 - Ridge Regression
 - Lasso Regression

Linear Regression in Machine Learning

- > Types of Linear Regression
 - Simple Linear Regression
 - Multiple Linear Regression
- Linear Regression Line
 - Positive Linear Relationship
 - Negative Linear Relationship

- Finding the Best Fit Line
 - Cost Function
 - Gradient Descent
 - Model Performance
 - R-Squared Method
- > Assumptions of Linear Regression

Simple Linear Regression in Machine Learning

- > SLR Model
- Implementation of Simple Linear Regression Algorithm using Python
 - Data Pre-processing Step
 - Fitting Simple Linear Regression to the Training Set
 - Predicting the Test Result
 - Test Accuracy of the
 - Visualizing the Test Set Result.
 - Try to Improve the Performance of the Model

Multiple Linear Regression in Machine Learning

- ➤ MLR Equation
- > Assumptions for Multiple Linear Regression
- > Implementation of Multiple Linear Regression model using Python
 - Data Pre-processing Step
 - o Fitting Multiple Linear Regression to the Training Set
 - Predicting the Test Result
 - Test Accuracy of the
 - Visualizing the Test Set Result.
 - o Try to Improve the Performance of the Model

Backward Elimination

- ➤ What is Backward Elimination?
- Steps of Backward Elimination
- Need for Backward Elimination: An optimal Multiple Linear Regression model
- Implement the Steps for Backward Elimination method

Polynomial Regression in Machine Learning

- Need for Polynomial Regression
- Equation of the Polynomial Regression Model
- > Implementation of Polynomial Regression using Python

- Steps for Polynomial Regression:
 - Data Pre-processing
 - Build a Linear Regression Model
 - Build a Polynomial Regression Model
 - Visualize the Result for Linear Regression Model
 - Visualize the Result for Polynomial Regression Model
 - Predicting the Final Result with the Linear Regression Model
 - Predicting the Final Result with the Polynomial Regression Model
- Support Vector Regression (SVR)
- > Decision Tree Regression
- > Random Forest Regression
- Ridge Regression
- > Lasso Regression
- Linear Regression Vs Logistic Regression
- Classification vs Regression

Clustering Algorithms in Machine Learning

- > Types of Clustering Methods
 - Partitioning Clustering
 - Density-Based Clustering
 - Distribution Model-Based Clustering
 - Hierarchical Clustering
 - Fuzzy Clustering
- > Clustering Algorithms
 - K-Means Algorithm
 - o Mean-shift Algorithm
 - DBSCAN Algorithm
 - Expectation-Maximization Clustering using GMM
 - Agglomerative Hierarchical Algorithm
 - Affinity Propagation
- Applications of Clustering

Hierarchical Clustering Algorithm in Machine Learning

- > Hierarchical Clustering Technique Approaches
- ➤ Why Hierarchical Clustering?
- Agglomerative Hierarchical Clustering
- ➤ How the Agglomerative Hierarchical Clustering Work?
- Measure for the Distance between two Clusters
 - o Single Linkage

- Complete Linkage
- Average Linkage
- Centroid Linkage
- Working of Dendrogram in Hierarchical Clustering
- Hierarchical Clustering Example with Scratch Data
- > Python Implementation of Agglomerative Hierarchical Clustering
- Steps for Implementation of Agglomerative Hierarchical Clustering using Python
 - Data Pre-processing
 - Finding the Optimal Number of Clusters using the Dendrogram
 - Training the Hierarchical Clustering Model
 - Visualizing the Clusters

K-Means Clustering Algorithm in Machine Learning

- What is K-Means Algorithm?
- ➤ How does the K-Means Algorithm Work?
- ➤ How to Choose the Value of "K Number of Clusters" in K-Means Clustering?
 - Elbow Method
 - Within Cluster Sum of Squares (WCSS)
- K-Means Clustering Example with Scratch Data
- > Python Implementation of K-means Clustering Algorithm
- > Steps to Implement of K-means Clustering Algorithm
 - Data Pre-processing
 - Finding the Optimal Number of Clusters using the Elbow Method
 - o Training the K-means Algorithm on the Training Dataset
 - Visualizing the Clusters

Association Rules in Machine Learning

- > Association Rules
- Pattern Detection
- Market Basket Analysis
- Support, Confidence, Expected Confidence, Lift
- Finding Item Sets with High Support
- > Finding Item Rules with High Confidence or Lift

Apriori Algorithm in Machine Learning

> Apriori Algorithm

- How does Apriori Algorithm Works?
- Apriori Algorithm Example
- > Implementation of Apriori Algorithm using Python
- Limitations of Apriori Algorithm

Dimensionality Reduction & Model Selection Boosting

- > Dimensionality Reduction
 - Principal Component Analysis (PCA)
 - Linear Discriminant Analysis (LDA)
 - Kernel PCA
- Model Selection Boosting
 - Model Selection
 - Grid Search
 - K-Fold Cross Validation
 - XGBoost

STATISTICS

- Mean, Median and Mode
- Data Variability, Range, Quartiles
- IQR, Calculating Percentiles
- > Variance, Standard Deviation, Statistical Summaries
- > Types of Distributions Normal, Binomial, Poisson
- Probability Distributions & Skewness
- ➤ Data Distribution, 68–95–99.7 rule (Empirical rule)
- Descriptive Statistics and Inferential Statistics
- Statistics Terms and Definitions, Types of Data
- > Data Measurement Scales, Normalization, Standardization
- Measure of Distance, Euclidean Distance
- > Probability Calculation Independent & Dependent
- > Entropy, Information Gain
- > Regression

NATURAL LANGUAGE PROCESSING

- Natural Language Processing Introduction
 - o What is NLP?
 - History of NLP
 - Advantages of NLP
 - Disadvantages of NLP
- Components of NLP
 - Natural Language Understanding (NLU)

- Natural Language Generation (NLG)
- Difference between NLU and NLG
- Applications of NLP
- > How to build an NLP Pipeline?
- Phases of NLP
 - Lexical Analysis and Morphological
 - Syntactic Analysis (Parsing)
 - Semantic Analysis
 - Discourse Integration
 - Pragmatic Analysis
- > Why NLP is Difficult?
- NLP APIs
- NLP Libraries
- Natural Language Vs Computer Language

Exploring Features of NLTK

- Open the Text File for Processing
- Import Required Libraries
- Sentence Tokenizing
- Word Tokenizing
- Find the Frequency Distribution
- o Plot the Frequency Graph
- Remove Punctuation Marks
- o Plotting Graph without Punctuation Marks
- List of Stopwords
- Removing Stopwords
- Final Frequency Distribution
- > Word Cloud
 - Word Cloud Properties
 - o Python Code Implementation of the Word Cloud
 - Word Cloud with the Circle Shape
 - Word Cloud Advantages
 - Word Cloud Disadvantages
- > Stemming
 - Stemmer Examples
 - Stemming Algorithms
 - Porter's Stemmer
 - Lovin's Stemmer
 - Dawson's Stemmer
 - Krovetz Stemmer

- Xerox Stemmer
- Snowball Stemmer
- Lemmatization
 - Difference between Stemmer and Lemmatizer
 - Demonstrating how a lemmatizer works
 - Lemmatizer with default PoS value
 - Demonstrating the power of lemmatizer
 - Lemmatizer with different POS values
- Part-of-Speech (PoS) Tagging
 - o Why do we need Part of Speech (POS)?
 - Part of Speech (PoS) Tags
- Chunking
 - Categories of Phrases
 - Phrase Structure Rules
- Chinking
- Named Entity Recognition (NER)
 - Use-Cases
 - Commonly used Types of Named Entity
- WordNet
- Bag of Words
 - o What is the Bag-of-Words method?
 - Creating a basic Structure on Sentences
 - Words with Frequencies
 - Combining all the Words
 - Final Model of our Bag of Words
 - Applications & Limitations
- > TF-IDF
 - Term Frequency
 - Inverse Document Frequency
 - o Term Frequency Inverse Document Frequency

Deploying a Machine Learning Model on a Web using Flask

- What is Model Deployment?
- What is Flask?
- Installing Flask on your Machine
- > Understanding the Problem Statement
- > Build our Machine Learning Model
- Create the Webpage
- Connect the Webpage with the Model
- Working of the Deployed Model

DEEP LEARNING INTRODUCTION

- ➤ What is Deep Learning?
- Deep learning Process
- Types of Deep Learning Networks
 - Deep Neural Networks
 - Artificial Neural Networks
 - Convolutional Neural Networks
 - Recurrent Neural Networks
- > TensorFlow
 - History of TensorFlow
 - Components of TensorFlow
 - Use Cases/Applications of TensorFlow
 - Features of TensorFlow
- Installation of TensorFlow through pip & conda
- Advantage and Disadvantage of TensorFlow
- TensorFlow Playground
- Introduction to Keras, OpenCV & Theano
- > Implementation of Deep Learning

ARTIFICIAL INTELLIGENCE INTRODUCTION

- What is Artificial Intelligence?
 - o Why Artificial Intelligence?
 - Goals of Artificial Intelligence
 - o What Comprises to Artificial Intelligence?
 - Advantages of Artificial Intelligence
 - Disadvantages of Artificial Intelligence
- Applications of Artificial Intelligence
- History of Artificial Intelligence
- Types of Artificial Intelligence
- > Types of AI Agents
 - o Simple Reflex Agent
 - o Model-Based Reflex Agent
 - Goal-Based Agents
 - Utility-Based Agent
 - Learning Agent
- Search Algorithms in Artificial Intelligence
 - Search Algorithm Terminologies
 - Properties of Search Algorithms

- Types of Search Algorithms
- > Subsets of Artificial Intelligence
- Implementation of Artificial Intelligence

R PROGRAMMING

- ➤ Why R Programming is Important?
- ➤ Why Learn R?
- History of Python
- > Features of R
- Applications of R
- Comparison between R and Python
- Which is Better to Choose
- Pros and Cons of R
- Companies using R
- > R Packages
- > Downloading and Installing R
- What is CRAN?
- Setting R Environment:
 - Search Packages in R Environment
 - Search Packages in Machine with inbuilt function and manual searching
 - Attach Packages to R Environment
 - Install Add-on Packages from CRAN
 - Detach Packages from R Environment
 - Functions and Packages Help
- R Programming IDE
 - o RStudio
 - Downloading and Installing RStudio
- Variable Assignment
 - Displaying Variables
 - Deleting Variables
- Comments
 - Single Line
 - Multi Line Comments
- Data Types
 - Logical
 - Integer
 - o Double
 - Complex

- Character
- Operators
 - Arithmetic Operators
 - Relational Operators
 - Logical Operators
 - Assignment Operators
 - R as Calculator
 - Performing different Calculations
- > Functions
 - Inbuilt Functions
 - User Defined Functions
- > STRUCTURES
 - Vector
 - List
 - Matrix
 - Data frame
 - Array
 - Factors
- Inbuilt Constants & Functions
- Vectors
 - Vector Creation
 - o Single Element Vector
 - Multiple Element Vector
 - Vector Manipulation
 - Sub setting & Accessing the Data in Vector
- > Lists
 - Creating a List
 - Naming List Elements
 - Accessing List Elements
 - o Manipulating List Elements
 - Merging Lists
 - Converting List to Vector
- Matrix
 - Creating a Matrix
 - Accessing Elements of a Matrix
 - Matrix Manipulations
 - Dimensions of Matrix
 - Transpose of Matrix
- Data Frames
 - Create Data Frame
 - Vector to Data Frame

- Character Data Converting into Factors: StringsAsFactors
- Convert the columns of a data frame to characters
- Extract Data from Data Frame
- Expand Data Frame, Column Bind and Row Bind
- Merging / Joining Data Frames
 - o Inner Join
 - Outer Join
 - Cross Join
- > Arrays
 - Create Array with Multiple Dimensions
 - Naming Columns and Rows
 - o Accessing Array Elements
 - Manipulating Array Elements
 - Calculations across Array Elements
- > Factors
 - Factors in Data Frame
 - Changing the Order of Levels
 - Generating Factor Levels
 - Deleting Factor Levels

Loading and Reading Data in R

- Data Extraction from CSV
 - Getting and Setting the Working Directory
 - o Input as CSV File, Reading a CSV File
 - o Analyzing the CSV File, Writing into a CSV File
- Data Extraction from URL
- Data Extraction from CLIPBOARD
- Data Extraction from EXCEL
 - Install "xlsx" Package
 - Verify and Load the "xlsx" Package, Input as "xlsx" File
 - Reading the Excel File, Writing the Excel File
- Data Extraction from DATABASES
 - RMySQL Package, Connecting to MySql
 - Querying the Tables, Query with Filter Clause
 - Updating Rows in the Tables, Inserting Data into the Tables
 - Creating Tables in MySql, Dropping Tables in MySql
 - Using dplyr and tidyr package

Machine Learning using R

- Data Pre-processing
- Classification Algorithms
 - K Nearest Neighbors Classification
 - Naive Bayes Classification
 - Decision Tree Classification
 - Random Forest Classification
 - Support Vector Machine Classification
 - Logistic Regression
 - Kernel SVM
- Regression Algorithms
 - Simple Linear Regression
 - Multiple Linear Regression
 - Polynomial Regression
 - Support Vector Regression
 - Decision Tree Regression
 - Random Forest Regression
- Clustering Algorithms
 - K-Means Clustering
 - Hierarchical Clustering
- Association Rule Algorithms
 - Apriori
 - Eclat
- Dimensionality-Reduction
 - Principal Component Analysis
 - Linear Discriminant Analysis
 - Kernal PCA
- Model Selection & Boosting
 - o Grid Search
 - K Fold Cross Validation
 - XGBoost
- Natural Language Processing
- Deep Learning Artificial Neural Networks

DATA MINING WEKA

- Explore Weka Machine Learning Toolkit
 - Installation of WEKA
 - Features of WEKA Toolkit
 - Explore & Load data sets in Weka
- Perform Data Preprocessing Tasks
 - Apply Filters on Data Sets
- > Performing Classification on Data Sets

- o J48 Classification Algorithm
- Decision Trees Algorithm
- K-NN Classification Algorithm
- o Naive-Bayes Classification Algorithm
- Comparing Classification Results
- Performing Regression on Data Sets
 - Simple Linear Regression Model
 - Multi Linear Regression Model
 - Logistic Regression Model
 - Cross-Validation and Percentage Split
- > Performing Clustering on Data Sets
 - o Clustering Techniques in Weka
 - Simple K-means Clustering Algorithm
 - o Association Rule Mining on Data Sets
 - Apriori Association Rule Algorithm
 - Discretization in the Rule Generation Process
- Graphical Visualization in Weka
 - Visualization Features in Weka
 - Visualize the data in various dimensions

3rd Floor, No: 92/5, ACR Greens, Opp. Salarpuria, Outer Ring Road, Beside Biryani Zone, Marathahalli, Bangalore - 560037; info@saagtech.com/www.saagtech.com/www.saagtech.com/www.saagtech.com/www.saagtech.com/www.saagtech.com/ Phone: +91-94 916 29222

+91 94 916 28222 | info@saagtech.com

www.saagtech.com